Functional analysis of anionic phospholipids in cell metabolism in Escherichia coli

Weiming Xia, The University of Texas Graduate School of Biomedical Sciences at Houston


The major goal of this work was to understand the function of anionic phospholipid in E. coli cell metabolism. One important finding from this work is the requirement of anionic phospholipid for the DnaA protein-dependent initiation of DNA replication. An rnhA mutation, which bypasses the need for the DnaA protein through induction of constitutive stable DNA replication, suppressed the growth arrest phenotype of a $pgsA$ mutant in which the synthesis of anionic phospholipid was blocked. The maintenance of plasmids dependent on an $oriC$ site for replication, and therefore DnaA protein, was also compromised under conditions of limiting anionic phospholipid synthesis. These results provide support for the involvement of anionic phospholipids in normal initiation of DNA replication at oriC in vivo by the DnaA protein. In addition, structural and functional requirements of two major anionic phospholipids, phosphatidylglycerol and cardiolipin, were examined. Introduction into cells of the ability to make phosphatidylinositol did not suppress the need for the naturally occurring phosphatidylglycerol. The requirement for phosphatidylglycerol was concluded to be more than maintenance of the proper membrane surface charge. Examination of the role of cardiolipin revealed its ability to replace the zwitterionic phospholipid, phosphatidylethanolamine, in maintaining an optimal membrane lipid organization. This work also reported the DNA sequence of the cls gene, which encodes the CL synthase responsible for the synthesis of cardiolipin.

Subject Area

Molecular biology|Microbiology|Genetics

Recommended Citation

Xia, Weiming, "Functional analysis of anionic phospholipids in cell metabolism in Escherichia coli" (1994). Texas Medical Center Dissertations (via ProQuest). AAI9520980.