Molecular evolution of primate immunodeficiency viruses and hepatitis delta virus

Julia Samuilovna Krushkal, The University of Texas Graduate School of Biomedical Sciences at Houston


Primate immunodeficiency viruses, or lentiviruses (HIV-1, HIV-2, and SIV), and hepatitis delta virus (HDV) are RNA viruses characterized by rapid evolution. Infection by primate immunodeficiency viruses usually results in the development of acquired immunodeficiency syndrome (AIDS) in humans and AIDS-like illnesses in Asian macaques. Similarly, hepatitis delta virus infection causes hepatitis and liver cancer in humans. These viruses are heterogeneous within an infected patient and among individuals. Substitution rates in the virus genomes are high and vary in different lineages and among sites. Methods of phylogenetic analysis were applied to study the evolution of primate lentiviruses and the hepatitis delta virus. The following results have been obtained: (1) The substitution rate varies among sites of primate lentivirus genes according to the two parameter gamma distribution, with the shape parameter $\alpha$ being close to 1. (2) Primate immunodeficiency viruses fall into species-specific lineages. Therefore, viral transmissions across primate species are not as frequent as suggested by previous authors. (3) Primate lentiviruses have acquired or lost their pathogenicity several times in the course of evolution. (4) Evidence was provided for multiple infections of a North American patient by distinct HIV-1 strains of the B subtype. (5) Computer simulations indicate that the probability of committing an error in testing HIV transmission depends on the number of virus sequences and their length, the divergence times among sequences, and the model of nucleotide substitution. (6) For future investigations of HIV-1 transmissions, using longer virus sequences and avoiding the use of distant outgroups is recommended. (7) Hepatitis delta virus strains are usually related according to the geographic region of isolation. (8) Evolution of HDV is characterized by the rate of synonymous substitution being lower than the nonsynonymous substitution rate and the rate of evolution of the noncoding region. (9) There is a strong preference for G and C nucleotides at the third codon positions of the HDV coding region.

Subject Area

Genetics|Molecular biology|Microbiology

Recommended Citation

Krushkal, Julia Samuilovna, "Molecular evolution of primate immunodeficiency viruses and hepatitis delta virus" (1996). Texas Medical Center Dissertations (via ProQuest). AAI9626093.