Functional studies on DNA double-strand break repair proteins (MmRad51, Ku80) in mice

Dae-Sik Lim, The University of Texas Graduate School of Biomedical Sciences at Houston


RecA in Escherichia coli and it's homologue, ScRad51 in Saccharomyces cerevisiae, play important roles in recombinational repair. ScRad51 homologues have been discovered in a wide range of organisms including Schizosaccharomyces pombe, lily, chicken, mouse and human. To date there is no direct evidence to describe that mouse Rad51(MmRad51) is involved in DNA double-strand break repair. In order to elucidate the role of MmRad51 in vivo, it was mutated by the embryonic stem (ES) cell/gene targeting technology in mice. The mutant embryos arrested in development shortly after implantation. There was a decrease in cell proliferation followed by programmed cell death, and trophectoderm-derived cells were sensitive to $\gamma$-radiation. Severe chromosome loss was observed in most mitotically dividing cells. The mutant embryos lived longer and developed further in a p53 mutant background; however, double-mutant embryonic fibroblasts failed to proliferate in tissue culture, reflecting the embryos limited life span. Based on these data, MmRad51 repairs DNA damage induced by $\gamma$-radiation, is needed to maintain euplody, and plays an important role in proliferating cells. Ku is a heterodimer of 70 and 80 kDs subunit, which binds to DNA ends and other altered DNA structures such as hairpins, nicks, and gaps. In addition, Ku is required for DNA-PK activity through a direct association. Although the biochemical properties of Ku and DNA-PKcs have been characterized in cells, their physiological functions are not clear. In order to understand the function of Ku in vivo, we generated mice homozygous for a mutation of the Ku80 gene. Ku80-deficient mice, like scid mice, showed severe immunodeficiency due to a impairment of V(D)J recombination. Mutant mice were semiviable and runted, cells derived from mutant embryos displayed hypersensitivity to $\gamma$-radiation, a decreased growth rate, a slow entry into S phase, altered colony size distributions, and a short life span. Based on these results, mutant cells and mice appeared to prematurely age.

Subject Area

Molecular biology

Recommended Citation

Lim, Dae-Sik, "Functional studies on DNA double-strand break repair proteins (MmRad51, Ku80) in mice" (1996). Texas Medical Center Dissertations (via ProQuest). AAI9707553.