Esx1 is an X-chromosome-imprinted regulator of placental formation and fetal growth

Yuanhao Li, The University of Texas Graduate School of Biomedical Sciences at Houston


Placental formation and genomic imprinting are two important features of embryonic development in placental mammals. Genetic studies have demonstrated that imprinted genes play a prominent role in regulating placental formation. In marsupials, mice and humans, the paternally derived X chromosome is preferentially inactivated in the placental tissues of female embryos. This special form of genomic imprinting may have evolved under the same selective forces as autosomal imprinted genes. This chromosomal imprinting phenomenon predicts the existence of maternally expressed X-linked genes that regulate placental development. In this study, an X-linked homeobox gene, designated Esx1 has been isolated. During embryogenesis, Esx1 was expressed in a subset of placental tissues and regulates formation of the chorioallantoic placenta. Esx1 acted as an imprinted gene. Heterozygous female mice that inherit an Esx1-null allele from their father developed normally. However, heterozygous females that inherit the Esx1 mutation from their mother were born 20% smaller than normal and had an identical phenotype to hemizygous mutant males and homozygous mutant females. Surprisingly, although Esx1 mutant embryos were initially comparable in size to wild-type controls at 13.5 days post coitum (E13.5) their placentas were significantly larger (51% heavier than controls). Defects in the morphogenesis of the labyrinthine layer were observed as early as E11.5. Subsequently, vascularization abnormalities developed at the maternal-fetal interface, causing fetal growth retardation. These results identify Esx1 as the first essential X-chromosome-imprinted regulator of placental development that influences fetal growth and may have important implications in understanding human placental insufficiency syndromes such as intrauterine growth retardation (IUGR).

Subject Area

Genetics|Cellular biology

Recommended Citation

Li, Yuanhao, "Esx1 is an X-chromosome-imprinted regulator of placental formation and fetal growth" (1998). Texas Medical Center Dissertations (via ProQuest). AAI9909443.