Analysis of Lim1 LIM domains in mouse development

Siew-Sim Cheah, The University of Texas Graduate School of Biomedical Sciences at Houston


Transcriptional regulation is fundamental for the precise development of all organisms. Through tight regulation, necessary genes are activated at proper spatial and temporal patterns, while unnecessary genes are repressed. A large family of regulator proteins that have been demonstrated to be involved in various developmental processes by activation and repression of target genes is the homeodomain family of proteins. To date, the function of many of these homeoproteins has been elucidated in diverse species. However, the molecular mechanism underlying the function of these proteins has not been fully understood. In this study, the molecular mechanism of the function of a LIM-homeoprotein, Lim1, was examined. In addition to the homeodomain, Lim1 contains two LIM domains that are highly conserved among species. This high conservation along with data from in vitro studies on Xenopus Lim1 suggests that the LIM domains might be important for the function of Lim1 as a transcriptional regulator. Here, the functional importance of the LIM domains of Lim1 was determined by using a novel gene-targeting strategy in mouse embryonic stem (ES) cells. A cre-loxP system was used in conjunction with the unique genomic organization of Lim1 to obtain four types of mutant ES cell lines that would allow for the in vivo analysis of the function of both the LIM domains of Lim1 together and also singularly. These four mutant Lim1 alleles either contained base-pair changes at the LIM encoding exons that alters zinc-binding amino acids of the LIM domains or contained only exogenous loxP sequences in the first intron of Lim1, which serves as the control allele. These mutations in the LIM domains would presumably abolish the zinc-finger tertiary structure of the domain and thus render the domain non-functional. Mice carrying mutations at both the LIM domains of Lim1, L1L2, die around E10 without anterior head structures anterior to rhombomere 3, identical in phenotype to the Lim1 null mutants in spite of the presence of mutant Lim1 RNA. This result demonstrates that the integrity of both the LIM domains are essential for the function of Lim1. This is further supported by the phenotype of mice carrying mutation at only the second LIM domain of Lim1, L2. The L2 mice although still carrying one intact Lim1 LIM domain, also die in utero. The L2 mice die at varying times, from around E8 to E10 with anterior defects in addition to other axial defects which have yet to be fully characterized. The results of this study so far demonstrates that the integrity of both LIM domains are required for the function of Lim1.

Subject Area

Molecular biology

Recommended Citation

Cheah, Siew-Sim, "Analysis of Lim1 LIM domains in mouse development" (1999). Texas Medical Center Dissertations (via ProQuest). AAI9951895.