Duncan NRI Faculty and Staff Publications

Publication Date

4-3-2025

Journal

Epilepsy Currents

DOI

10.1177/15357597251317898

PMID

40190794

PMCID

PMC11969472

PubMedCentral® Posted Date

4-3-2025

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Keywords

monogenic neurodevelopmental disorders, developmental and epileptic encephalopathy, synaptic transmission, mouse models, electrophysiology

Abstract

Synaptic dysfunction is a hallmark of many neurological disorders including epilepsy. An increasing number of epilepsy-causing pathogenic variants are being identified in genes encoding presynaptic proteins that affect every step of the synaptic vesicle cycle, from vesicle loading, tethering, docking, priming, calcium sensing, fusing, to recycling. These different molecular dysfunctions result in converging impairment of presynaptic neurotransmitter release, yet lead to diverse epileptic disorders. This review focuses on representative monogenic epileptic disorders caused by pathogenic variants of key presynaptic proteins involved in different stages of the synaptic vesicle cycle: SYN1 (vesicle pool regulation), STXBP1 (vesicle docking, priming, and fusion), and DNM1 (vesicle recycling). We discuss the molecular, synaptic, and circuit mechanisms of these archetypal synaptic vesicle exocytosis and endocytosis-related epilepsies and highlight the diversity and commonality of their presynaptic dysfunctions. We further discuss future avenues of research to better connect distinct presynaptic alterations to epileptogenesis and develop novel therapeutic approaches.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.