Center for Medical Ethics and Health Policy Staff Publications

Publication Date

7-1-2022

Journal

Journal of Molecular Diagnostics

DOI

10.1016/j.jmoldx.2022.03.011

PMID

35487348

PMCID

PMC9302205

PubMedCentral® Posted Date

7-1-2022

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Keywords

Algorithms, Child, DNA Copy Number Variations, High-Throughput Nucleotide Sequencing, Humans, Neoplasms, Sequence Analysis, DNA

Abstract

Somatic copy number alterations (SCNAs) in tumors are clinically significant diagnostic, prognostic, and predictive biomarkers. SCNA detection from targeted next-generation sequencing panels is increasingly common in clinical practice; however, detailed descriptions of optimization and validation of SCNA pipelines for small targeted panels are limited. This study describes the validation and implementation of a tumor-only SCNA pipeline using CNVkit, augmented with custom modules and optimized for clinical implementation by testing reference materials and clinical tumor samples with different classes of copy number variation (CNV; amplification, single copy loss, and biallelic loss). Using wet-bench and in silico methods, various parameters impacting CNV calling, including assay-intrinsic variables (establishment of normal reference and sequencing coverage), sample-intrinsic variables (tumor purity and sample quality), and CNV algorithm-intrinsic variables (bin size), were optimized. The pipeline was trained and tested on an optimization cohort and validated using an independent cohort with a sensitivity and specificity of 100% and 93%, respectively. Using custom modules, intragenic CNVs with breakpoints within tumor suppressor genes were uncovered. Using the validated pipeline, re-analysis of 28 pediatric solid tumors that had been previously profiled for mutations identified SCNAs in 86% (24/28) samples, with 46% (13/28) samples harboring findings of potential clinical relevance. Our report highlights the importance of rigorous establishment of performance characteristics of SCNA pipelines and presents a detailed validation framework for optimal SCNA detection in targeted sequencing panels.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.