Publication Date



The Texas Heart Journal





Publication Date(s)

August 2016





PubMedCentral® Posted Date


PubMedCentral® Full Text Version


Published Open-Access



Bone marrow cells, comparative study, electrophysiologic techniques, cardiac, endocardium, heart failure/therapy, mapping, multicenter study, recovery of function, ventricular dysfunction, left


We know that endocardial mapping reports left ventricular electrical activity (voltage) and that these data can predict outcomes in patients undergoing traditional revascularization. Because the mapping data from experimental models have also been linked with myocardial viability, we hypothesized an association between increased unipolar voltage in patients undergoing intramyocardial injections and their subsequent improvement in left ventricular performance.

For this exploratory analysis, we evaluated 86 patients with left ventricular dysfunction, heart-failure symptoms, possible angina, and no revascularization options, who were undergoing endocardial mapping. Fifty-seven patients received bone marrow mononuclear cell (BMC) injections and 29 patients received cell-free injections of a placebo.

The average mapping site voltage was 9.7 ± 2 mV, and sites with voltage of ≥6.9 mV were engaged by needle and injected (with BMC or placebo). For all patients, at 6 months, left ventricular ejection fraction (LVEF) improved, and after covariate adjustment this improvement was best predicted by injection-site voltage. For every 2-mV increase in baseline voltage, we detected a 1.3 increase in absolute LVEF units for all patients (P=0.038). Multiple linear regression analyses confirmed that voltage and the CD34+ count present in bone marrow (but not treatment assignment) were associated with improved LVEF (P=0.03 and P=0.014, respectively).

In an exploratory analysis, higher endocardial voltage and bone marrow CD34+ levels were associated with improved left ventricular function among ischemic cardiomyopathy patients. Intramyocardial needle injections, possibly through stimulation of angiogenesis, might serve as a future therapy in patients with reduced left ventricular function and warrants investigation.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.