hanjing wu

Date of Graduation


Document Type

Dissertation (PhD)

Program Affiliation

Biochemistry and Molecular Biology

Degree Name

Doctor of Philosophy (PhD)

Advisor/Committee Chair

Yong-Jian Geng (M.D., Ph.D.)

Committee Member

Marie-Francoise Doursout, Ph.D.

Committee Member

Yangxin Li, Ph.D.

Committee Member

Sudhir Paul, Ph.D.

Committee Member

Michael Wassler, Ph.D.


Atherosclerosis is a chronic, complex arterial disease characterized by intimal lipid accumulation and inflammation. A unique lipid-binding molecule, namely cluster of differentiation 1d (CD1d), may impact atherosclerosis. Structurally, CD1d acts as a nonpolymorphic cell-surface receptor, resembling the major histocompatibility complex-I (MHC-I). While MHC-I restricts peptide antigen presentation to T cells, CD1d presents lipid antigens to T cells named CD1d-restrictedd T cells. Although increased expression of CD1d has been found in human plaques, the exact nature of CD1d-recognized lipids in atherosclerosis remains to be determined. Three groups of lipids may undergo oxidation in atherosclerosis producing atherogenic lipids: phospholipids, fatty acids, and cholesterol. The central hypothesis is that CD1d recognizes and present oxidative lipids to activate CD1d-restricted T cells, and trigger proinflammatory signal transduction In the first part of this study, oxidative phospholipids were identified and characterized as potential autoantigen for CD1d-restricted T cells. Derived from phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine by oxidization, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) is v commonly found in atherosclerotic plaques. Upon stimulation with PGPC, spleen-derived CD1d-restricted T cells produced higher levels of cytokines and proliferated at higher rates than those without PGPC stimulation. CD1d deficiency compromised the PGPC-triggered T cell activation, suggesting that PGPC may function as a potentially novel autoantigen for T cells in atherosclerosis. In the second part of this study, CD1d-mediated proinflammatory signaling was evaluated in murine models. Enhanced CD1 expression occurred in spleens of db/db mice with hyperlipidemia. Tumor necrosis factor-alpha (TNF-α) was increased in db/db spleen, while TNF-α receptor expression augmented in the db/db murine heart, in comparison with those in normal mice. The nuclear factor-κ B (NF-κB) expression was enhanced in the db/db heart, whereas CD1d-null mice showed lower NF-κB, implying the involvement of CD1d in inflammation of the spleen and heart tissues in the mice with hyperlipidemia. The current study has identified PGPC as a novel lipid antigen recognized by CD1d-restricted T cells in atherosclerosis. The animal study has also provided evidence that CD1d regulates NF-κB-mediated proinflammatory signaling. Hence, CD1d-restricted T cell responses to autolipid antigen and mediated inflammatory signal may represent a new molecular pathway that triggers cardiovascular tissue injury in atherosclerosis and hyperlipidemia.


atherosclerosis, lipid binding, CD1d, phospholipids, signal transduction, inflammation, T cells, hyperlipidemia