Faculty, Staff and Student Publications

Publication Date

3-29-2025

Journal

Bioinformatics

Abstract

Summary: Cells differentiate to their final fates along unique trajectories, often involving multi-potent progenitors that can produce multiple terminally differentiated cell types. Recent developments in single-cell transcriptomic and epigenomic measurement provide tremendous opportunities for mapping these trajectories. The visualization of single-cell data often relies on dimension reduction methods such as UMAP to simplify high-dimensional single-cell data down to an understandable 2D form. However, these dimension reduction methods are not constructed to allow direct interpretation of the reduced dimensions in terms of cell differentiation. To address these limitations, we developed a new approach that places each cell from a single-cell dataset within a simplex whose vertices correspond to terminally differentiated cell types. Our approach can quantify and visualize current cell fate commitment and future cell potential. We developed CytoSimplex, a standalone open-source package implemented in R and Python that provides simple and intuitive visualizations of cell differentiation in 2D ternary and 3D quaternary plots. We believe that CytoSimplex can help researchers gain a better understanding of cell type transitions in specific tissues and characterize developmental processes.

Keywords

Single-Cell Analysis, Cell Differentiation, Software, Humans, Computational Biology

DOI

10.1093/bioinformatics/btaf119

PMID

40119904

PMCID

PMC11992338

PubMedCentral® Posted Date

3-22-2025

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Included in

Dentistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.