Student and Faculty Publications

Publication Date

9-1-2023

Journal

HardwareX

Abstract

Rapid and effective methods for the detection of analytes such as water contaminants, food adulterants and biomolecules are essential for the protection of public health and environmental protection. Most of the currently established analytical techniques need sophisticated equipment, centralized testing facilities, costly operations, and trained personnel. Such limitations make them inaccessible to the general populace, particularly in regions with limited resources. The emergence of microfluidic devices offers a promising alternative to overcome several such constraints. This work describes a protocol for fabricating a low-cost, open-source paper-based microfluidic device using easily available tools and materials for colorimetric detection of analytes. The ease and simplicity of fabrication allow users to design customized devices. The device is coupled with an imaging box assembled from 3D printed parts to maintain uniform lighting conditions during analytical testing. The platform allows digital imaging using smartphones or cameras to instantaneously capture images of reaction zones on the device for quantitative analysis. The system is demonstrated for detecting hexavalent chromium, a toxic water contaminant. The image analysis is performed using open-source ImageJ for quantification of results. The approach demonstrated in this work can be readily adopted for a wide range of sensing applications.

Keywords

Paper-based devices, Imaging box, 3D Printing, Colorimetric detection, Sensor

Comments

PMID: 37529685

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.