Student and Faculty Publications
Publication Date
12-8-2023
Journal
Cancers
Abstract
Nexavant was reported as an alternative to the TLR3 agonist of Poly(I:C) and its derivatives. The physicochemical properties, signaling pathways, anti-cancer effects, and mechanisms of Nexavant were investigated. The distinctive characteristics of Nexavant compared to that of Poly(I:C) were demonstrated by precise quantification, enhanced thermostability, and increased resistance to RNase A. Unlike Poly(I:C), which activates TLR3, RIG-I, and MDA5, Nexavant stimulates signaling through TLR3 and RIG-I but not through MDA5. Compared to Poly(I:C), an intratumoral Nexavant treatment led to a unique immune response, immune cell infiltration, and suppression of tumor growth in various animal cancer models. Nexavant therapy outperformed anti-PD-1 antibody treatment in all the tested models and showed a synergistic effect in combinational therapy, especially in well-defined cold tumor models. The effect was similar to that of nivolumab in a humanized mouse model. Intranasal instillation of Nexavant led to the recruitment of immune cells (NK, CD4+ T, and CD8+ T) to the lungs, suppressing lung metastasis and improving animal survival. Our study highlighted Nexavant’s defined nature for clinical use and unique signaling pathways and its potential as a standalone anti-cancer agent or in combination with anti-PD-1 antibodies.
Keywords
Nexavant, TLR3 agonist, in situ vaccine, anti-tumor efficacy, immune checkpoint inhibitor, combination immunotherapy
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Immunotherapy Commons, Medical Sciences Commons, Oncology Commons
Comments
Supplementary Materials
PMID: 38136298