Student and Faculty Publications

Publication Date

1-19-2023

Journal

Brief Bioinformatics

Abstract

Accounting for cell type compositions has been very successful at analyzing high-throughput data from heterogeneous tissues. Differential gene expression analysis at cell type level is becoming increasingly popular, yielding biomarker discovery in a finer granularity within a particular cell type. Although several computational methods have been developed to identify cell type-specific differentially expressed genes (csDEG) from RNA-seq data, a systematic evaluation is yet to be performed. Here, we thoroughly benchmark six recently published methods: CellDMC, CARseq, TOAST, LRCDE, CeDAR and TCA, together with two classical methods, csSAM and DESeq2, for a comprehensive comparison. We aim to systematically evaluate the performance of popular csDEG detection methods and provide guidance to researchers. In simulation studies, we benchmark available methods under various scenarios of baseline expression levels, sample sizes, cell type compositions, expression level alterations, technical noises and biological dispersions. Real data analyses of three large datasets on inflammatory bowel disease, lung cancer and autism provide evaluation in both the gene level and the pathway level. We find that csDEG calling is strongly affected by effect size, baseline expression level and cell type compositions. Results imply that csDEG discovery is a challenging task itself, with room to improvements on handling low signal-to-noise ratio and low expression genes.

Keywords

Software, Gene Expression Profiling, RNA-Seq, Computer Simulation, Signal-To-Noise Ratio, Sequence Analysis, RNA

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.