Student and Faculty Publications

Publication Date

6-1-2024

Journal

Clinical Trials

Abstract

In precision oncology, integrating multiple cancer patient subgroups into a single master protocol allows for the simultaneous assessment of treatment effects in these subgroups and promotes the sharing of information between them, ultimately reducing sample sizes and costs and enhancing scientific validity. However, the safety and efficacy of these therapies may vary across different subgroups, resulting in heterogeneous outcomes. Therefore, identifying subgroup-specific optimal doses in early-phase clinical trials is crucial for the development of future trials. In this article, we review various innovative Bayesian information-borrowing strategies that aim to determine and optimize subgroup-specific doses. Specifically, we discuss Bayesian hierarchical modeling, Bayesian clustering, Bayesian model averaging or selection, pairwise borrowing, and other relevant approaches. By employing these Bayesian information-borrowing methods, investigators can gain a better understanding of the intricate relationships between dose, toxicity, and efficacy in each subgroup. This increased understanding significantly improves the chances of identifying an optimal dose tailored to each specific subgroup. Furthermore, we present several practical recommendations to guide the design of future early-phase oncology trials involving multiple subgroups when using the Bayesian information-borrowing methods.

Keywords

Bayesian methods, dose optimization, heterogeneous effect, information borrowing, precision oncology

Comments

NIHMSID: NIHMS1939015

PMID: 38243401

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.