Student and Faculty Publications

Publication Date

9-1-2024

Journal

International Journal of Particle Therapy

Abstract

PURPOSE: Radiation-induced lymphopenia is a common immune toxicity that adversely impacts treatment outcomes. We report here our approach to translate a deep-learning (DL) model developed to predict severe lymphopenia risk among esophageal cancer into a strategy for incorporating the immune system as an organ-at-risk (iOAR) to mitigate the risk.

MATERIALS AND METHODS: We conducted "virtual clinical trials" utilizing retrospective data for 10 intensity-modulated radiation therapy (IMRT) and 10 passively-scattered proton therapy (PSPT) esophageal cancer patients. For each patient, additional treatment plans of the modality other than the original were created employing standard-of-care (SOC) dose constraints. Predicted values of absolute lymphocyte count (ALC) nadir for all plans were estimated using a previously-developed DL model. The model also yielded the relative magnitudes of contributions of iOARs dosimetric factors to ALC nadir, which were used to compute iOARs dose-volume constraints, which were incorporated into optimization criteria to produce "IMRT-enhanced" and "intensity-modulated proton therapy (IMPT)-enhanced" plans.

RESULTS: Model-predicted ALC nadir for the original IMRT (IMRT-SOC) and PSPT plans agreed well with actual values. IMPT-SOC showed greater immune sparing vs IMRT and PSPT. The average mean body doses were 13.10 Gy vs 7.62 Gy for IMRT-SOC vs IMPT-SOC for patients treated with IMRT-SOC; and 8.08 Gy vs 6.68 Gy for PSPT vs IMPT-SOC for patients treated with PSPT. For IMRT patients, the average predicted ALC nadir of IMRT-SOC, IMRT-enhanced, IMPT-SOC, and IMPT-enhanced was 281, 327, 351, and 392 cells/µL, respectively. For PSPT patients, the average predicted ALC nadir of PSPT, IMPT-SOC, and IMPT-enhanced was 258, 316, and 350 cells/µL, respectively. Enhanced plans achieved higher predicted ALC nadir, with an average improvement of 40.8 cells/µL (20.6%).

CONCLUSION: The proposed DL model-guided strategy to incorporate the immune system as iOAR in IMRT and IMPT optimization has the potential for radiation-induced lymphopenia mitigation. A prospective clinical trial is planned.

Keywords

Deep learning, Radiation-induced lymphopenia, Esophageal cancer, Proton therapy

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.