Faculty, Staff and Student Publications

Publication Date

4-1-2022

Journal

Medical Physics

Abstract

BACKGROUND: While microbubble contrast agents (MCAs) are commonly used in ultrasound (US), they are inherently limited to vascular targets due to their size. Alternatively, phase-changing nanodroplet contrast agents (PNCAs) can be delivered as nanoscale agents (i.e., small enough to extravasate), but when exposed to a US field of sufficient mechanical index (MI), they convert to MCAs, which can be visualized with high contrast using nonlinear US.

PURPOSE: To investigate the effect of perfluorocarbon (PFC) core composition and presence of cholesterol in particle coatings on stability and image contrast generated from acoustic activation of PNCAs using high-frequency US suitable for clinical imaging.

METHODS: PNCAs with varied core compositions (i.e., mixtures of perfluoropentane [C5] and/or perfluorohexane [C6]) and two coating formulations (i.e., with and without cholesterol) were characterized and investigated for thermal/temporal stability and postactivation, nonlinear US contrast in phantom and in vivo environments. Through hydrophone measurements and nonlinear numerical modeling, MI was estimated for pulse sequences used for PNCA activation.

RESULTS: All PNCA compositions were characterized to have similar diameters (249-267 nm) and polydispersity (0.151-0.185) following fabrication. While PNCAs with majority C5 core composition showed higher levels of spontaneous signal (i.e., not due to US activation) in phantoms than C6-majority PNCAs, all compositions were stable during imaging experiments. When activating PNCAs with a 12.3-MHz US pulse (MI = 1.1), C6-core particles with cholesterol-free coatings (i.e., CF-C6-100 particles) generated a median contrast of 3.1, which was significantly higher (p < 0.001) than other formulations. Further, CF-C6-100 particles were activated in a murine model, generating US contrast

CONCLUSION: C6-core PNCAs can provide high-contrast US imaging with minimal nonspecific activation in phantom and in vivo environments.

Keywords

Acoustics, Animals, Contrast Media, Fluorocarbons, Mice, Microbubbles, Ultrasonography

DOI

10.1002/mp.15564

PMID

35195908

PMCID

PMC9041204

PubMedCentral® Posted Date

3-7-2022

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.