
Faculty, Staff and Student Publications
Publication Date
10-28-2024
Abstract
Maintenance methylation, of palindromic CpG dinucleotides at DNA replication forks, is crucial for the faithful mitotic inheritance of genomic 5-methylcytosine (5mC) methylation patterns. MBD proteins use two arginine residues to recognize symmetrically-positioned methyl groups in fully-methylated 5mCpG/5mCpG and 5mCpA/TpG dinucleotides. In contrast, C2H2 zinc finger (ZF) proteins recognize CpG and CpA, whether methylated or not, within longer specific sequences in a site- and strand-specific manner. Unmethylated CpG sites, often within CpG island (CGI) promoters, need protection by protein factors to maintain their hypomethylated status. Members of the BEN domain proteins bind CGCG or CACG elements within CGIs to regulate gene expression. Despite their overall structural diversity, MBD, ZF and BEN proteins all use arginine residues to recognize guanine, adopting either a 'straight-on' or 'oblique' conformation. The straight-on conformation accommodates a methyl group in the (5mC/T)pG dinucleotide, while the oblique conformation can clash with the methyl group of 5mC, leading to preferential binding of unmethylated sequences.
Keywords
Arginine, DNA Methylation, DNA-Binding Proteins, Humans, CpG Islands, Cytosine, Zinc Fingers, 5-Methylcytosine, Protein Binding, Models, Molecular, DNA, Protein Conformation
DOI
10.1093/nar/gkae832
PMID
39329271
PMCID
PMC11514455
PubMedCentral® Posted Date
10-28-2024
PubMedCentral® Full Text Version
Post-print
Graphical Abstract
Published Open-Access
yes
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Genetic Phenomena Commons, Medical Genetics Commons, Oncology Commons