
Faculty, Staff and Student Publications
Publication Date
7-1-2024
Journal
Physics and Imaging in Radiation Oncology
Abstract
Background and purpose: In many clinics, positron-emission tomography is unavailable and clinician time extremely limited. Here we describe a deep-learning model for autocontouring gross disease for patients undergoing palliative radiotherapy for primary lung lesions and/or hilar/mediastinal nodal disease, based only on computed tomography (CT) images.
Materials and methods: An autocontouring model (nnU-Net) was trained to contour gross disease in 379 cases (352 training, 27 test); 11 further test cases from an external centre were also included. Anchor-point-based post-processing was applied to remove extraneous autocontoured regions. The autocontours were evaluated quantitatively in terms of volume similarity (Dice similarity coefficient [DSC], surface Dice coefficient, 95th percentile Hausdorff distance [HD95], and mean surface distance), and scored for usability by two consultant oncologists. The magnitude of treatment margin needed to account for geometric discrepancies was also assessed.
Results: The anchor point process successfully removed all erroneous regions from the autocontoured disease, and identified two cases to be excluded from further analysis due to 'missed' disease. The average DSC and HD95 were 0.8 ± 0.1 and 10.5 ± 7.3 mm, respectively. A 10-mm uniform margin-distance applied to the autocontoured region was found to yield "full coverage" (sensitivity > 0.99) of the clinical contour for 64 % of cases. Ninety-seven percent of evaluated autocontours were scored by both clinicians as requiring no or minor edits.
Conclusions: Our autocontouring model was shown to produce clinically usable disease outlines, based on CT alone, for approximately two-thirds of patients undergoing lung radiotherapy. Further work is necessary to improve this before clinical implementation.
Keywords
Auto-contouring, Lung disease, Radiotherapy, Computed tomography, Deep learning, GTV
DOI
10.1016/j.phro.2024.100637
PMID
39297080
PMCID
PMC11408859
PubMedCentral® Posted Date
8-24-2024
PubMedCentral® Full Text Version
Post-print
Published Open-Access
yes
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Genetic Phenomena Commons, Medical Genetics Commons, Oncology Commons