Faculty, Staff and Student Publications

Publication Date

7-1-2024

Journal

Physics and Imaging in Radiation Oncology

Abstract

Background and purpose: In many clinics, positron-emission tomography is unavailable and clinician time extremely limited. Here we describe a deep-learning model for autocontouring gross disease for patients undergoing palliative radiotherapy for primary lung lesions and/or hilar/mediastinal nodal disease, based only on computed tomography (CT) images.

Materials and methods: An autocontouring model (nnU-Net) was trained to contour gross disease in 379 cases (352 training, 27 test); 11 further test cases from an external centre were also included. Anchor-point-based post-processing was applied to remove extraneous autocontoured regions. The autocontours were evaluated quantitatively in terms of volume similarity (Dice similarity coefficient [DSC], surface Dice coefficient, 95th percentile Hausdorff distance [HD95], and mean surface distance), and scored for usability by two consultant oncologists. The magnitude of treatment margin needed to account for geometric discrepancies was also assessed.

Results: The anchor point process successfully removed all erroneous regions from the autocontoured disease, and identified two cases to be excluded from further analysis due to 'missed' disease. The average DSC and HD95 were 0.8 ± 0.1 and 10.5 ± 7.3 mm, respectively. A 10-mm uniform margin-distance applied to the autocontoured region was found to yield "full coverage" (sensitivity > 0.99) of the clinical contour for 64 % of cases. Ninety-seven percent of evaluated autocontours were scored by both clinicians as requiring no or minor edits.

Conclusions: Our autocontouring model was shown to produce clinically usable disease outlines, based on CT alone, for approximately two-thirds of patients undergoing lung radiotherapy. Further work is necessary to improve this before clinical implementation.

Keywords

Auto-contouring, Lung disease, Radiotherapy, Computed tomography, Deep learning, GTV

DOI

10.1016/j.phro.2024.100637

PMID

39297080

PMCID

PMC11408859

PubMedCentral® Posted Date

8-24-2024

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.