
Faculty, Staff and Student Publications
Publication Date
7-9-2022
Journal
Nature Communications
Abstract
Melanoma cells display distinct intrinsic phenotypic states. Here, we seek to characterize the molecular regulation of these states using multi-omic analyses of whole exome, transcriptome, microRNA, long non-coding RNA and DNA methylation data together with reverse-phase protein array data on a panel of 68 highly annotated early passage melanoma cell lines. We demonstrate that clearly defined cancer cell intrinsic transcriptomic programs are maintained in melanoma cells ex vivo and remain highly conserved within melanoma tumors, are associated with distinct immune features within tumors, and differentially correlate with checkpoint inhibitor and adoptive T cell therapy efficacy. Through integrative analyses we demonstrate highly complex multi-omic regulation of melanoma cell intrinsic programs that provide key insights into the molecular maintenance of phenotypic states. These findings have implications for cancer biology and the identification of new therapeutic strategies. Further, these deeply characterized cell lines will serve as an invaluable resource for future research in the field.
Keywords
DNA Methylation, Humans, Melanoma, MicroRNAs, RNA, Long Noncoding, Transcriptome, Melanoma, Cancer genomics, Melanoma
DOI
10.1038/s41467-022-31510-1
PMID
35810190
PMCID
PMC9271073
PubMedCentral® Posted Date
7-9-2022
PubMedCentral® Full Text Version
Post-print
Published Open-Access
yes
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Genetic Phenomena Commons, Medical Genetics Commons, Oncology Commons