Faculty, Staff and Student Publications

Publication Date

3-25-2025

Journal

Scientific Reports

Abstract

Molecular profiling of inner ear neurons has broadened the classification of the primary afferents that support neural coding for hearing and balance. To extend spatiotemporal characterization of auditory and vestibular neuron diversity, we established a transgenic reporter mouse model (Prphp-mCherry), where elements of the peripherin promoter (Prphp) drive expression of the mCherry fluorescent reporter. Type III intermediate filament protein peripherin expression is a marker for type II spiral ganglion neurons (SGN) that innervate the cochlear outer hair cells, and the small diameter 'bouton' vestibular ganglion neurons (VGN) innervating the type II vestibular hair cells. Using Nanopore genome sequencing, the integration site of the transgene construct was identified within the class III metabotropic glutamate receptor 8 gene (Grm8, chromosome 6). Use of CUBIC / PEGASOS clearing of early postnatal to adult inner ear tissues enabled in situ 3D spatial localization of a dispersed population of cochlear mCherry + ve SGN, with highest expression and density in the hook (high frequency encoding) basal region. Of these mCherry + ve SGN, type II SGN (peripherin-immunopositive) were all co-labeled in the basal region, but the majority of the overall mCherry-delineated SGN auditory subpopulation were type I SGN innervating inner hair cells. In the VGN, mCherry + ve neurons represented ~ 15% of the adult population, dispersed as a small diameter subpopulation throughout both the inferior and superior VGN regions. These findings resolve heterogeneous type I and type II cochlear SGN subpopulations, particularly in the structurally complex hook region, and further differentiate vestibular primary afferents across postnatal development.

Keywords

Animals, Mice, Promoter Regions, Genetic, Peripherins, Mice, Transgenic, Ear, Inner, Spiral Ganglion, Receptors, Metabotropic Glutamate, Cell Differentiation, Genes, Reporter, Neurons, Red Fluorescent Protein

DOI

10.1038/s41598-025-94011-3

PMID

40133378

PMCID

PMC11937576

PubMedCentral® Posted Date

3-25-2025

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.