
Faculty, Staff and Student Publications
Publication Date
4-1-2024
Journal
Annual Review of Statistics and Its Application
Abstract
The microbiome represents a hidden world of tiny organisms populating not only our surroundings but also our own bodies. By enabling comprehensive profiling of these invisible creatures, modern genomic sequencing tools have given us an unprecedented ability to characterize these populations and uncover their outsize impact on our environment and health. Statistical analysis of microbiome data is critical to infer patterns from the observed abundances. The application and development of analytical methods in this area require careful consideration of the unique aspects of microbiome profiles. We begin this review with a brief overview of microbiome data collection and processing and describe the resulting data structure. We then provide an overview of statistical methods for key tasks in microbiome data analysis, including data visualization, comparison of microbial abundance across groups, regression modeling, and network inference. We conclude with a discussion and highlight interesting future directions.
Keywords
compositional data, differential abundance, network inference, ordination, regression modeling, zero inflation
DOI
10.1146/annurev-statistics-040522-120734
PMID
38962089
PMCID
PMC11218911
PubMedCentral® Posted Date
4-1-2025
PubMedCentral® Full Text Version
Author MSS
Published Open-Access
yes
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Genetic Phenomena Commons, Medical Genetics Commons, Oncology Commons