Faculty, Staff and Student Publications

Publication Date

2-5-2022

Journal

Microbiome

Abstract

Background: In microbiome data analysis, unsupervised clustering is often used to identify naturally occurring clusters, which can then be assessed for associations with characteristics of interest. In this work, we systematically compared beta diversity and clustering methods commonly used in microbiome analyses. We applied these to four published datasets where highly distinct microbiome profiles could be seen between sample groups, as well a clinical dataset with less clear separation between groups.

Results: Although no single method outperformed the others consistently, we did identify the key scenarios where certain methods can underperform. Specifically, the Bray Curtis (BC) metric resulted in poor clustering in a dataset where high-abundance OTUs were relatively rare. In contrast, the unweighted UniFrac (UU) metric clustered poorly on dataset with a high prevalence of low-abundance OTUs. To explore these hypotheses about BC and UU, we systematically modified the properties of the poorly performing datasets and found that this approach resulted in improved BC and UU performance. Based on these observations, we rationally combined BC and UU to generate a novel metric. We tested its performance while varying the relative contributions of each metric and also compared it with another combined metric, the generalized UniFrac distance. The proposed metric showed high performance across all datasets.

Conclusions: Our systematic evaluation of clustering performance in these five datasets demonstrates that there is no existing clustering method that universally performs best across all datasets. We propose a combined metric of BC and UU that capitalizes on the complementary strengths of the two metrics. Video abstract.

Keywords

Cluster Analysis, Microbiota, Beta diversity, Bray Curtis distance, Unsupervised clustering, Unweighted UniFrac distance

DOI

10.1186/s40168-021-01199-3

PMID

35120564

PMCID

PMC8817542

PubMedCentral® Posted Date

2-5-2022

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.