Faculty, Staff and Student Publications

Publication Date

6-8-2024

Journal

Communications Medicine

Abstract

BACKGROUND: Radiotherapy is a core treatment modality for oropharyngeal cancer (OPC), where the primary gross tumor volume (GTVp) is manually segmented with high interobserver variability. This calls for reliable and trustworthy automated tools in clinician workflow. Therefore, accurate uncertainty quantification and its downstream utilization is critical.

METHODS: Here we propose uncertainty-aware deep learning for OPC GTVp segmentation, and illustrate the utility of uncertainty in multiple applications. We examine two Bayesian deep learning (BDL) models and eight uncertainty measures, and utilize a large multi-institute dataset of 292 PET/CT scans to systematically analyze our approach.

RESULTS: We show that our uncertainty-based approach accurately predicts the quality of the deep learning segmentation in 86.6% of cases, identifies low performance cases for semi-automated correction, and visualizes regions of the scans where the segmentations likely fail.

CONCLUSIONS: Our BDL-based analysis provides a first-step towards more widespread implementation of uncertainty quantification in OPC GTVp segmentation.

Keywords

Medical imaging, Cancer imaging

DOI

10.1038/s43856-024-00528-5

PMID

38851837

PMCID

PMC11162474

PubMedCentral® Posted Date

6-8-2024

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.