
Faculty, Staff and Student Publications
Publication Date
1-1-2022
Journal
Head and Neck Tumor Segmentation and Outcome Prediction
Abstract
Determining progression-free survival (PFS) for head and neck squamous cell carcinoma (HNSCC) patients is a challenging but pertinent task that could help stratify patients for improved overall outcomes. PET/CT images provide a rich source of anatomical and metabolic data for potential clinical biomarkers that would inform treatment decisions and could help improve PFS. In this study, we participate in the 2021 HECKTOR Challenge to predict PFS in a large dataset of HNSCC PET/CT images using deep learning approaches. We develop a series of deep learning models based on the DenseNet architecture using a negative log-likelihood loss function that utilizes PET/CT images and clinical data as separate input channels to predict PFS in days. Internal model validation based on 10-fold cross-validation using the training data (N = 224) yielded C-index values up to 0.622 (without) and 0.842 (with) censoring status considered in C-index computation, respectively. We then implemented model ensembling approaches based on the training data cross-validation folds to predict the PFS of the test set patients (N = 101). External validation on the test set for the best ensembling method yielded a C-index value of 0.694, placing 2nd in the competition. Our results are a promising example of how deep learning approaches can effectively utilize imaging and clinical data for medical outcome prediction in HNSCC, but further work in optimizing these processes is needed.
DOI
10.1007/978-3-030-98253-9_27
PMID
35399868
PMCID
PMC8991450
PubMedCentral® Posted Date
4-8-2022
PubMedCentral® Full Text Version
Author MSS
Published Open-Access
yes
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Genetic Phenomena Commons, Medical Genetics Commons, Oncology Commons, Otolaryngology Commons