
Faculty, Staff and Student Publications
Publication Date
4-14-2023
Journal
Biostatistics
Abstract
Support vector regression (SVR) is particularly beneficial when the outcome and predictors are nonlinearly related. However, when many covariates are available, the method's flexibility can lead to overfitting and an overall loss in predictive accuracy. To overcome this drawback, we develop a feature selection method for SVR based on a genetic algorithm that iteratively searches across potential subsets of covariates to find those that yield the best performance according to a user-defined fitness function. We evaluate the performance of our feature selection method for SVR, comparing it to alternate methods including LASSO and random forest, in a simulation study. We find that our method yields higher predictive accuracy than SVR without feature selection. Our method outperforms LASSO when the relationship between covariates and outcome is nonlinear. Random forest performs equivalently to our method in some scenarios, but more poorly when covariates are correlated. We apply our method to predict donor kidney function 1 year after transplant using data from the United Network for Organ Sharing national registry.
Keywords
Humans, Algorithms, Regression Analysis, Support Vector Machine
DOI
10.1093/biostatistics/kxab022
PMID
34494086
PMCID
PMC10102886
PubMedCentral® Posted Date
9-8-2021
PubMedCentral® Full Text Version
Post-print
Published Open-Access
yes
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Genetic Phenomena Commons, Medical Genetics Commons, Oncology Commons