Faculty, Staff and Student Publications

Publication Date

1-1-2024

Journal

Cancer Genomics & Proteomics

Abstract

Background/aim: The capacity for non-homologous end-joining (NHEJ) repair plays a pivotal role in maintaining genome stability and in carcinogenesis. However, there is little literature on the involvement of NHEJ-related genes in childhood acute lymphocytic leukemia (ALL). Our study aimed to elucidate the impact of polymorphisms of X-ray repair cross-complementing group 4 (XRCC4) (rs6869366, rs2075685, rs2075686, rs28360071, rs3734091, rs28360317, rs1805377), XRCC5 (rs828907, rs11685387, rs9288518), XRCC6 (rs5751129, rs2267437, rs132770, rs132774), XRCC7 rs7003908, and DNA ligase IV (LIG4) rs1805388, on the odds of childhood ALL.

Materials and methods: Genotypes NHEJ-related genes of 266 cases and 266 controls were determined, and the genotype-phenotype correlation was investigated by examining mRNA transcript expression and the capacity for overall and precise NHEJ repair.

Results: The variant genotypes of XRCC4 rs3734091, rs28360071, XRCC5 rs828907, and XRCC6 rs5751129 were significantly associated with increased odds of childhood ALL. Further analysis based on susceptibility genotypes showed no significant differences in mRNA transcript expression levels among childhood ALL cases with various putative high-risk genotypes, except XRCC6 rs5751129. Moreover, the overall NHEJ repair capacity was similar among carriers of different XRCC4, XRCC5, and XRCC6 genotypes. However, it is worth noting that individuals carrying the variant C allele at XRCC6 rs5751129 exhibited lower precise NHEJ repair capacity compared to those with the wild-type T allele.

Conclusion: Our study identified significant associations between XRCC4 rs3734091, rs28360071, XRCC5 rs828907, and XRCC6 rs5751129 genotypes and childhood ALL. Notably, lower transcriptional expression and reduced precise NHEJ repair capacity were observed in patients carrying the C allele of XRCC6 rs5751129. Further investigations are required to gain deeper insights into childhood ALL development.

Keywords

Humans, Genotype, Alleles, Precursor Cell Lymphoblastic Leukemia-Lymphoma, DNA Repair, RNA, Messenger, Genetic Predisposition to Disease, Case-Control Studies, Polymorphism, Single Nucleotide, Childhood acute lymphocytic leukemia, comet, genotype, non-homologous end-joining, polymorphism, repair capacity

DOI

10.21873/cgp.20436

PMID

38423600

PMCID

PMC10905275

PubMedCentral® Posted Date

3-3-2024

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.