
Faculty, Staff and Student Publications
Publication Date
10-1-2024
Journal
Bioactive Materials
Abstract
Extracellular vesicles (EVs) have emerged as potential biomarkers for diagnosing a range of diseases without invasive procedures. Extracellular vesicles also offer advantages compared to synthetic vesicles for delivery of various drugs; however, limitations in segregating EVs from other particles and soluble proteins have led to inconsistent EV retrieval rates with low levels of purity. Here, we report a new high-yield (88.47 %) and rapid (< 20 min) EV isolation method termed size exclusion - fast protein liquid chromatography (SE-FPLC). We show SE-FPLC can effectively isolate EVs from multiple sources including EVs derived from human and mouse cells and serum samples. The results indicate that SE-FPLC can successfully remove highly abundant protein contaminants such as albumin and lipoprotein complexes, which can represent a major hurdle in large scale isolation of EVs. The high-yield nature of SE-FPLC allows for easy industrial scaling up of EV production for various clinical utilities. SE-FPLC also enables analysis of small volumes of blood for use in point-of-care diagnostics in the clinic. Collectively, SE-FPLC offers many advantages over current EV isolation methods and offers rapid clinical translation.
Keywords
Extracellular vesicles, Size exclusion - fast performance liquid chromatography, Isolation methods
DOI
10.1016/j.bioactmat.2024.08.002
PMID
39290685
PMCID
PMC11407901
PubMedCentral® Posted Date
9-4-2024
PubMedCentral® Full Text Version
Post-print
Graphical Abstract
Published Open-Access
yes
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Genetic Phenomena Commons, Medical Genetics Commons, Oncology Commons