
Faculty, Staff and Student Publications
Publication Date
9-1-2023
Journal
Journal of Multivariate Analysis
Abstract
We study the limiting behavior of singular values of a lag-τ" role="presentation" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; font-size-adjust: none; overflow-wrap: normal; text-wrap-mode: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: rgb(33, 33, 33); font-family: BlinkMacSystemFont, -apple-system, "Segoe UI", Roboto, Oxygen, Ubuntu, Cantarell, "Fira Sans", "Droid Sans", "Helvetica Neue", sans-serif; position: relative;">ττ sample auto-correlation matrix Rτϵ" role="presentation" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; font-size-adjust: none; overflow-wrap: normal; text-wrap-mode: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: rgb(33, 33, 33); font-family: BlinkMacSystemFont, -apple-system, "Segoe UI", Roboto, Oxygen, Ubuntu, Cantarell, "Fira Sans", "Droid Sans", "Helvetica Neue", sans-serif; position: relative;">RϵτRτϵ of large dimensional vector white noise process, the error term ϵ" role="presentation" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; font-size-adjust: none; overflow-wrap: normal; text-wrap-mode: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: rgb(33, 33, 33); font-family: BlinkMacSystemFont, -apple-system, "Segoe UI", Roboto, Oxygen, Ubuntu, Cantarell, "Fira Sans", "Droid Sans", "Helvetica Neue", sans-serif; position: relative;">ϵϵ in the high-dimensional factor model. We establish the limiting spectral distribution (LSD) that characterizes the global spectrum of Rτϵ" role="presentation" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; font-size-adjust: none; overflow-wrap: normal; text-wrap-mode: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: rgb(33, 33, 33); font-family: BlinkMacSystemFont, -apple-system, "Segoe UI", Roboto, Oxygen, Ubuntu, Cantarell, "Fira Sans", "Droid Sans", "Helvetica Neue", sans-serif; position: relative;">RϵτRτϵ, and derive the limit of its largest singular value. All the asymptotic results are derived under the high-dimensional asymptotic regime where the data dimension and sample size go to infinity proportionally. Under mild assumptions, we show that the LSD of Rτϵ" role="presentation" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; font-size-adjust: none; overflow-wrap: normal; text-wrap-mode: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: rgb(33, 33, 33); font-family: BlinkMacSystemFont, -apple-system, "Segoe UI", Roboto, Oxygen, Ubuntu, Cantarell, "Fira Sans", "Droid Sans", "Helvetica Neue", sans-serif; position: relative;">RϵτRτϵ is the same as that of the lag-τ" role="presentation" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; font-size-adjust: none; overflow-wrap: normal; text-wrap-mode: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: rgb(33, 33, 33); font-family: BlinkMacSystemFont, -apple-system, "Segoe UI", Roboto, Oxygen, Ubuntu, Cantarell, "Fira Sans", "Droid Sans", "Helvetica Neue", sans-serif; position: relative;">ττ sample auto-covariance matrix. Based on this asymptotic equivalence, we additionally show that the largest singular value of Rτϵ" role="presentation" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; font-size-adjust: none; overflow-wrap: normal; text-wrap-mode: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: rgb(33, 33, 33); font-family: BlinkMacSystemFont, -apple-system, "Segoe UI", Roboto, Oxygen, Ubuntu, Cantarell, "Fira Sans", "Droid Sans", "Helvetica Neue", sans-serif; position: relative;">RϵτRτϵ converges almost surely to the right end point of the support of its LSD. Based on these results, we further propose two estimators of total number of factors with lag-τ" role="presentation" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; font-size-adjust: none; overflow-wrap: normal; text-wrap-mode: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: rgb(33, 33, 33); font-family: BlinkMacSystemFont, -apple-system, "Segoe UI", Roboto, Oxygen, Ubuntu, Cantarell, "Fira Sans", "Droid Sans", "Helvetica Neue", sans-serif; position: relative;">ττ sample auto-correlation matrices in a factor model. Our theoretical results are fully supported by numerical experiments as well.
Keywords
Auto-correlation matrix, Auto-covariance matrix, Largest eigenvalue, Limiting spectral distribution, Random matrix theory
DOI
10.1016/j.jmva.2023.105205
PMID
37388905
PMCID
PMC10306325
PubMedCentral® Posted Date
9-1-2024
PubMedCentral® Full Text Version
Author MSS
Published Open-Access
yes
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Genetic Phenomena Commons, Medical Genetics Commons, Oncology Commons