Faculty, Staff and Student Publications

Publication Date

1-22-2025

Journal

Methods and Protocols

Abstract

Glioblastoma (GBM) is a lethal primary brain cancer with a 5.6% five-year survival rate. Tumor treating fields (TTFields) are alternating low-intensity electric fields that have demonstrated a GBM patient survival benefit. We previously reported that 0.5-24 h of TTFields exposure resulted in an increased uptake of FITC-dextran fluorescent probes (4-20 kDa) in human GBM cells. However, this approach, in which a fluorescence plate-based detector is used to evaluate cells attached to glass coverslips, cannot distinguish FITC-dextran uptake in live vs. dead cells. The goal of the study was to report the optimization and validation of two independent methods to quantify human GBM cell membrane permeabilization induced by TTFields exposure. First, we optimized flow cytometry by measuring mean fluorescence intensity at 72 h for 4 kDa (TTFields 6726 ± 958.0 vs. no-TTFields 5093 ± 239.7,

Keywords

cell membrane permeability, flow cytometry, lactate dehydrogenase (LDH), method optimization, tumor treating fields (TTFields)

DOI

10.3390/mps8010010

PMID

39997634

PMCID

PMC11858626

PubMedCentral® Posted Date

1-22-2025

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.