
Faculty, Staff and Student Publications
Publication Date
5-20-2025
Journal
NPJ Precision Oncology
Abstract
Acute myeloid leukemia (AML) resides in an immune-rich microenvironment, yet, immune-based therapies have faltered in eliciting durable responses. Bridging this paradox requires a comprehensive understanding of leukemic interactions within the bone marrow microenvironment. We optimized a high-throughput tissue-microarray-based pipeline for high-plex spatial immunofluorescence and mass cytometry imaging on a single slide, capturing immune, tumor, and structural components. Using unbiased clustering on the spatial K function, we unveiled the presence of tertiary lymphoid-like aggregates in bone marrow, which we validated using spatial transcriptomics and an independent proteomics approach. We then found validated TLS signatures predictive of outcomes in AML using an integrated public 480-patient transcriptomic dataset. By harnessing high-plex spatial proteomics, we open the possibility of discovering novel structures and interactions that underpin leukemic immune response. Further, our study's methodologies and resources can be adapted for other bone marrow diseases where decalcification and autofluorescence present challenges.
Keywords
Acute myeloid leukaemia, Tumour immunology, Immunological techniques
DOI
40394148
PMID
40394148
PMCID
PMC12092627
PubMedCentral® Posted Date
5-20-2025
PubMedCentral® Full Text Version
Post-print
Published Open-Access
yes
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Genetic Phenomena Commons, Hematology Commons, Medical Genetics Commons, Oncology Commons