Faculty, Staff and Student Publications

Publication Date

5-22-2025

Journal

npj Breast Cancer

Abstract

The distinction between pN1 and ≥pN2 breast cancer impacts treatment decisions. Using data from a single institution on women with cN0 invasive breast cancer who were treated with upfront surgery, had 1-3 positive SLNs, and underwent completion ALND, we used gradient boosted trees (XGBoost) to develop a model for predicting ≥pN2 disease using clinicopathologic variables. Model performance was tested in a held-out subsample (20%) and validated using data from the National Cancer Database (NCDB). Of 3574 patients with cN0 breast cancer, 587 underwent upfront surgery and had 1-3 positive SLNs. Of these, 415 (70.7%) underwent completion ALND, with 64 (15.4%) having ≥pN2 disease. The trained algorithm had an AUC of 0.87 (95% CI: 0.74, 0.97) in the held-out test data, and 0.78 (95% CI: 0.76, 0.79) in recent NCDB data where completion ALND was much less commonly performed. The number of positive SLNs and the total number of SLNs removed had the greatest influence on model predictions in the held-out test data. The developed model effectively estimates the probability of ≥pN2 disease in cN0 patients with positive SLNs, providing guidance for the management of patients with breast cancer.

DOI

10.1038/s41523-025-00757-4

PMID

40404657

PMCID

PMC12098822

PubMedCentral® Posted Date

5-22-2025

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.