Faculty, Staff and Student Publications

Publication Date

6-1-2023

Journal

Biometrics

Abstract

The rapid acceleration of genetic data collection in biomedical settings has recently resulted in the rise of genetic compendiums filled with rich longitudinal disease data. One common feature of these data sets is their plethora of interval-censored outcomes. However, very few tools are available for the analysis of genetic data sets with interval-censored outcomes, and in particular, there is a lack of methodology available for set-based inference. Set-based inference is used to associate a gene, biological pathway, or other genetic construct with outcomes and is one of the most popular strategies in genetics research. This work develops three such tests for interval-censored settings beginning with a variance components test for interval-censored outcomes, the interval-censored sequence kernel association test (ICSKAT). We also provide the interval-censored version of the Burden test, and then we integrate ICSKAT and Burden to construct the interval censored sequence kernel association test-optimal (ICSKATO) combination. These tests unlock set-based analysis of interval-censored data sets with analogs of three highly popular set-based tools commonly applied to continuous and binary outcomes. Simulation studies illustrate the advantages of the developed methods over ad hoc alternatives, including protection of the type I error rate at very low levels and increased power. The proposed approaches are applied to the investigation that motivated this study, an examination of the genes associated with bone mineral density deficiency and fracture risk.

Keywords

Computer Simulation, Genetic Association Studies, Data Interpretation, Statistical

DOI

10.1111/biom.13636

PMID

35165890

PMCID

PMC9375811

PubMedCentral® Posted Date

6-1-2024

PubMedCentral® Full Text Version

Author MSS

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.