
Faculty, Staff and Student Publications
Publication Date
3-11-2024
Abstract
T cells have the ability to recognize and kill specific target cells, giving therapies based on their potential for treating infection, diabetes, cancer, and other diseases. However, the advancement of T cell-based treatments has been hindered by difficulties in their ex vivo activation and expansion, the number of cells required for sustained in vivo levels, and preferential localization following systemic delivery. Biomaterials may help to overcome many of these challenges by providing a combined means of proliferation, antigen presentation, and cell localization upon delivery. In this work, we studied self-assembling Multidomain Peptides (MDPs) as scaffolds for T cell culture, activation, and expansion. We evaluated the effect of different MDP chemistries on their biocompatibility with T cells and the maintenance of antigen specificity for T cells cultured in the hydrogels. We also examined the potential application of MDPs as scaffolds for T cell activation and expansion and the effect of MDP encapsulation on T cell phenotype. We found high cell viability when T cells were encapsulated in noncationic MDPs, O
Keywords
Humans, Hydrogels, T-Lymphocytes, Nanofibers, Peptides, Neoplasms, Cell Proliferation
DOI
10.1021/acsbiomaterials.3c01617
PMID
38385283
PMCID
PMC10955686
PubMedCentral® Posted Date
3-11-2025
PubMedCentral® Full Text Version
Author MSS
Published Open-Access
yes
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Genetic Phenomena Commons, Medical Genetics Commons, Oncology Commons