Student and Faculty Publications
Publication Date
1-1-2024
Journal
Cancer Medicine
Abstract
BACKGROUND: Acute myeloid leukemia (AML) with an internal tandem duplication in the fms-like tyrosine kinase receptor 3 gene (FLT3-ITD) is associated with poor survival, and few studies have examined the impact of modifiable behaviors, such as nutrient quality and timing, in this subset of acute leukemia.
METHODS: The influence of diet composition (low-sucrose and/or low-fat diets) and timing of diet were tested in tandem with anthracycline treatment in orthotopic xenograft mouse models. A pilot clinical study to test receptivity of pediatric leukemia patients to macronutrient matched foods was conducted. A role for the circadian protein, BMAL1 (brain and muscle ARNT-like 1), in effects of diet timing was studied by overexpression in FLT3-ITD-bearing AML cells.
RESULTS: Reduced tumor burden in FLT3-ITD AML-bearing mice was observed with interventions utilizing low-sucrose and/or low-fat diets, or time-restricted feeding (TRF) compared to mice fed normal chow ad libitum. In a tasting study, macronutrient matched low-sucrose and low-fat meals were offered to pediatric acute leukemia patients who largely reported liking the meals. Expression of the circadian protein, BMAL1, was heightened with TRF and the low-sucrose diet. BMAL1 overexpression and treatment with a pharmacological inducer of BMAL1 was cytotoxic to FLT3-ITD AML cells.
CONCLUSIONS: Mouse models for FLT3-ITD AML show that diet composition and timing slows progression of FLT3-ITD AML growth in vivo, potentially mediated by BMAL1. These interventions to enhance therapy efficacy show preliminary feasibility, as pediatric leukemia patients responded favorable to preparation of macronutrient matched meals.
Keywords
acute myeloid leukemia, circadian rhythm, diet, time‐restricted feeding
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Medical Sciences Commons, Oncology Commons
Comments
PMID: 38334474