Faculty and Staff Publications

Publication Date

11-1-2022

Journal

Cell Reports

Abstract

Alterations in the intestinal physiology caused by pathogen colonization result in immune activation. To provide insights into the mechanisms underlying the control of immune activation by changes in intestinal homeostasis, we conducted a forward genetic screen for suppressors of immune activation by intestinal distension in Caenorhabditis elegans. Our results indicate that C. elegans ACC-4, a member of a family of acetylcholine receptors, is required in immune activation by defects in the defecation motor program or by pathogen infection. ACC-4 acts postsynaptically in non-cholinergic RIM neurons to regulate several immune genes and a Wnt-mediated host immune response. These findings uncover a gut-brain-microbial axis that uses neural cholinergic signaling and the Wnt pathway to control immune activation in response to alterations in intestinal homeostasis.

Keywords

Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Receptors, Cholinergic, Wnt Signaling Pathway, Cholinergic Agents

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.