Faculty and Staff Publications
Publication Date
10-28-2022
Journal
Cancers
Abstract
Adaptive therapy with abiraterone acetate (AA), whereby treatment is cycled on and off, has been presented as an alternative to continuous therapy for metastatic castration resistant prostate cancer (mCRPC). It is hypothesized that cycling through treatment allows sensitive cells to competitively suppress resistant cells, thereby increasing the amount of time that treatment is effective. It has been proposed that there exists a subset of patients for whom this competition can be enhanced through slight modifications. Here, we investigate how adaptive AA can be modified to extend time to progression using a simple mathematical model of stem cell, non-stem cell, and prostate-specific antigen (PSA) dynamics. The model is calibrated to longitudinal PSA data from 16 mCRPC patients undergoing adaptive AA in a pilot clinical study at Moffitt Cancer Center. Model parameters are then used to simulate range-bounded adaptive therapy (RBAT) whereby treatment is modulated to maintain PSA levels between pre-determined patient-specific bounds. Model simulations of RBAT are compared to the clinically applied adaptive therapy and show that RBAT can further extend time to progression, while reducing the cumulative dose patients received in 11/16 patients. Simulations also show that the cumulative dose can be reduced by up to 40% under RBAT. Through small modifications to the conventional adaptive therapy design, our study demonstrates that RBAT offers the opportunity to improve patient care, particularly in those patients who do not respond well to conventional adaptive therapy.
Keywords
adaptive therapy, competition, prostate cancer, mathematical modeling, patient-specific
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Medical Sciences Commons, Oncology Commons
Comments
PMID: 36358738