Student and Faculty Publications

Publication Date

2-10-2023

Journal

Nature Communications

Abstract

Although tissue-resident memory T (TRM) cells specific for previously encountered pathogens have been characterized, the induction and recruitment of brain TRM cells following immune therapy has not been observed in the context of glioblastoma. Here, we show that T cells expressing fibrinogen-like 2 (FGL2)–specific single-chain variable fragments (T-αFGL2) can induce tumor-specific CD8+ TRM cells that prevent glioblastoma recurrence. These CD8+ TRM cells display a highly expanded T cell receptor repertoire distinct from that found in peripheral tissue. When adoptively transferred to the brains of either immunocompetent or T cell-deficient naïve mice, these CD8+ TRM cells reject glioma cells. Mechanistically, T-αFGL2 cell treatment increased the number of CD69+CD8+ brain-resident memory T cells in tumor-bearing mice via a CXCL9/10 and CXCR3 chemokine axis. These findings suggest that tumor-specific brain-resident CD8+ TRM cells may have promising implications for the prevention of brain tumor recurrence.

Keywords

Animals, Mice, Brain, CD8-Positive T-Lymphocytes, Glioblastoma, Immunologic Memory, Memory T Cells, Neoplasm Recurrence, Local, T-Lymphocytes, Cancer immunotherapy, CNS cancer, T cells, Tumour immunology

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.