Publication Date



Frontiers in Bioengineering and Biotechnology


With the increasing demand for biomarker detection in wearable electronic devices, flexible biosensors have garnered significant attention. Additionally, graphene field-effect transistors (GFETs) have emerged as key components for constructing biosensors, owing to their high sensitivity, multifunctionality, rapid response, and low cost. Leveraging the advantages of flexible substrates, such as biocompatibility, adaptability to complex environments, and fabrication flexibility, flexible GFET sensors exhibit promising prospects in detecting various biomarkers. This review provides a concise summary of design strategies for flexible GFET biosensors, including non-encapsulated gate without dielectric layer coverage and external gate designs. Furthermore, notable advancements in sensing applications of biomolecules, such as proteins, glucose, and ions, are highlighted. Finally, we discuss the future challenges and prospects in this field, aiming to inspire researchers to address these issues in their further investigations.


flexible, graphene field-effect transistor, biomolecule, biosensor, biomarker



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.