Publication Date



PLOS Genetics


Timely detection and repair of envelope damage are paramount for bacterial survival. The Regulator of Capsule Synthesis (Rcs) stress response can transduce the stress signals across the multilayered gram-negative cell envelope to regulate gene expression in the cytoplasm. Previous studies defined the overall pathway, which begins with the sensory lipoprotein RcsF interacting with several outer membrane proteins (OMPs). RcsF can also interact with the periplasmic domain of the negative regulator IgaA, derepressing the downstream RcsCDB phosphorelay. However, how the RcsF/IgaA interaction is regulated at the molecular level to activate the signaling in response to stress remains poorly understood. In this study, we used a site-saturated mutant library of rcsF to carry out several independent genetic screens to interrogate the mechanism of signal transduction from RcsF to IgaA. We analyzed several distinct classes of rcsF signaling mutants, and determined the region of RcsF that is critically important for signal transduction. This region is bifunctional as it is important for RcsF interaction with both IgaA and OMPs. The mutant analysis provides strong evidence for conformational changes in the RcsF/OMP complex mediating signal transduction to IgaA, and the first direct evidence that OMPs play an important regulatory role in Rcs signaling.


Bacterial Outer Membrane Proteins, Cell Membrane, Escherichia coli, Escherichia coli Proteins, Signal Transduction



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.