Publication Date



Journal of Neurotrauma


Epigenetic information is not permanently encoded in the DNA sequence, but rather consists of reversible, heritable modifications that regulate the gene expression profile of a cell. Epigenetic modifications can result in cellular changes that can be long lasting and include DNA methylation, histone methylation, histone acetylation, and RNA methylation. As epigenetic modifications are reversible, the enzymes that add (epigenetic writers), the proteins that decode (epigenetic readers), and the enzymes that remove (epigenetic erasers) these modifications can be targeted to alter cellular function and disease biology. While epigenetic modifications and their contributions are intense topics of current research in the context of a number of diseases, including cancer, inflammatory diseases, and Alzheimer disease, the study of epigenetics in the context of traumatic brain injury (TBI) is in its infancy. In this review, we will summarize the experimental and clinical findings demonstrating that TBI triggers epigenetic modifications, with a focus on changes in DNA methylation, histone methylation, and the translational utility of the universal methyl donor S-adenosylmethionine (SAM). Finally, we will review the evidence for using methyl donors as possible treatments for TBI-associated pathology and outcome.


Brain Injuries, Traumatic, Epigenesis, Genetic, Histones, Humans, RNA, S-Adenosylmethionine



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.