Publication Date



Journal of Biomedical Semantics



The Vaccine Ontology (VO) is a biomedical ontology that standardizes vaccine annotation. Errors in VO will affect a multitude of applications that it is being used in. Quality assurance of VO is imperative to ensure that it provides accurate domain knowledge to these downstream tasks. Manual review to identify and fix quality issues (such as missing hierarchical is-a relations) is challenging given the complexity of the ontology. Automated approaches are highly desirable to facilitate the quality assurance of VO.


We developed an automated lexical approach that identifies potentially missing is-a relations in VO. First, we construct two types of VO concept-pairs: (1) linked; and (2) unlinked. Each concept-pair further derives an Acquired Term Pair (ATP) based on their lexical features. If the same ATP is obtained by a linked concept-pair and an unlinked concept-pair, this is considered to indicate a potentially missing is-a relation between the unlinked pair of concepts.


Applying this approach on the 1.1.192 version of VO, we were able to identify 232 potentially missing is-a relations. A manual review by a VO domain expert on a random sample of 70 potentially missing is-a relations revealed that 65 of the cases were valid missing is-a relations in VO (a precision of 92.86%).


The results indicate that our approach is highly effective in identifying missing is-a relation in VO.


Vaccine ontology, Ontology quality assurance, Hierarchical relations

Included in

Neurology Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.