Faculty and Staff Publications

Publication Date

1-1-2022

Journal

Frontiers in Neuroinformatics

Abstract

Sudden unexpected death of epilepsy (SUDEP) is a catastrophic and fatal complication of epilepsy and is the primary cause of mortality in those who have uncontrolled seizures. While several multifactorial processes have been implicated including cardiac, respiratory, autonomic dysfunction leading to arrhythmia, hypoxia, and cessation of cerebral and brainstem function, the mechanisms underlying SUDEP are not completely understood. Postictal generalized electroencephalogram (EEG) suppression (PGES) is a potential risk marker for SUDEP, as studies have shown that prolonged PGES was significantly associated with a higher risk of SUDEP. Automated PGES detection techniques have been developed to efficiently obtain PGES durations for SUDEP risk assessment. However, real-world data recorded in epilepsy monitoring units (EMUs) may contain high-amplitude signals due to physiological artifacts, such as breathing, muscle, and movement artifacts, making it difficult to determine the end of PGES. In this paper, we present a hybrid approach that combines the benefits of unsupervised and supervised learning for PGES detection using multi-channel EEG recordings. A K-means clustering model is leveraged to group EEG recordings with similar artifact features. We introduce a new learning strategy for training a set of random forest (RF) models based on clustering results to improve PGES detection performance. Our approach achieved a 5-second tolerance-based detection accuracy of 64.92%, a 10-second tolerance-based detection accuracy of 79.85%, and an average predicted time distance of 8.26 seconds with 286 EEG recordings using leave-one-out (LOO) cross-validation. The results demonstrated that our hybrid approach provided better performance compared to other existing approaches.

Keywords

epilepsy, generalized tonic-clonic seizure, postictal generalized EEG suppression, EEG, unsupervised learning, hybrid classifier

Included in

Neurology Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.