Faculty and Staff Publications

Publication Date

2-1-2024

Journal

Comprehensive Psychoneuroendocrinology

Abstract

BACKGROUND: The biological embedding theory posits that early life experiences can lead to enduring physiological and molecular changes impacting various life outcomes, notably academic performance. Studying previously revealed and objective biomarkers of early life stress exposure, such as telomere length (TL), glucocorticoid receptor gene DNA methylation (DNAme), and the volume of brain structures involved in the regulation of HPA axis functioning (the hippocampus, the amygdala, and the medial prefrontal cortex), in relation to academic performance is crucial. This approach provides an objective measure that surpasses the limitations of self-reported early life adversity and reveals potential molecular and neurological targets for interventions to enhance academic outcomes.

METHODS: The participants were 52 children of Mexican or Central American origin aged 11.6-15.6 years. DNA methylation levels and TL were analyzed in three cell sources: saliva, whole blood, and T cells derived from whole blood.

RESULTS: Overall, the concordance across three systems of stress-related biomarkers (TL, DNAme, and the brain) was observed to some extent, although it was less pronounced than we expected; no consistency in different cell sources was revealed. Each of the academic domains that we studied was characterized by a unique and distinct complex of associations with biomarkers, both in terms of the type of biomarker, the directionality of the observed effects, and the cell source of biomarkers. Furthermore, there were biomarker-by-sex interaction effects in predicting academic performance measures.

CONCLUSIONS: Assessed in an understudied youth sample, these preliminary data present new essential evidence for a deepened understanding of the biological mechanisms behind associations between exposure to early life stress and academic performance.

Keywords

HPA axis, DNA methylation, Telomere length, Immune cell composition, Brain, Academic performance

Comments

PMID: 38223236

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.