Faculty and Staff Publications

Publication Date

2-14-2022

Journal

Polymers

Abstract

In the growing polymer industry, the interest of researchers is captivated by bioplastics production with biodegradable and biocompatible properties. This study examines the polyhydroxyalkanoates (PHA) production performance of individual Lysinibacillus sp. RGS and Ralstonia eutropha ATCC 17699 and their co-culture by utilizing sugarcane bagasse (SCB) hydrolysates. Initially, acidic (H2SO4) and acidified sodium chlorite pretreatment was employed for the hydrolysis of SCB. The effects of chemical pretreatment on the SCB biomass assembly and its chemical constituents were studied by employing numerous analytical methods. Acidic pretreatment under optimal conditions showed effective delignification (60%) of the SCB biomass, leading to a maximum hydrolysis yield of 74.9 ± 1.65% and a saccharification yield of 569.0 ± 5.65 mg/g of SCB after enzymatic hydrolysis. The resulting SCB enzymatic hydrolysates were harnessed for PHA synthesis using individual microbial culture and their defined co-culture. Co-culture strategy was found to be effective in sugar assimilation, bacterial growth, and PHA production kinetic parameters relative to the individual strains. Furthermore, the effects of increasing acid pretreated SCB hydrolysates (20, 30, and 40 g/L) on cell density and PHA synthesis were studied. The effects of different cost-effective nutrient supplements and volatile fatty acids (VFAs) with acid pretreated SCB hydrolysates on cell growth and PHA production were studied. By employing optimal conditions and supplementation of corn steep liquor (CSL) and spent coffee waste extracted oil (SCGO), the co-culture produced maximum cell growth (DCW: 11.68 and 11.0 g/L), PHA accumulation (76% and 76%), and PHA titer (8.87 and 8.36 g/L), respectively. The findings collectively suggest that the development of a microbial co-culture strategy is a promising route for the efficient production of high-value bioplastics using different agricultural waste biomass.

Keywords

Lysinibacillus sp. RGS, Ralstonia eutropha ATCC 17699, co-culture strategy, sugarcane bagasse, acid pretreatment, polyhydroxyalkanoates production

Comments

PMID: 35215639

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.