Faculty, Staff and Student Publications

Publication Date

2-20-2024

Journal

Biophysical Journal

Abstract

Over the last 15 years, structural biology has seen unprecedented development and improvement in two areas: electron cryo-microscopy (cryo-EM) and predictive modeling. Once relegated to low resolutions, single-particle cryo-EM is now capable of achieving near-atomic resolutions of a wide variety of macromolecular complexes. Ushered in by AlphaFold, machine learning has powered the current generation of predictive modeling tools, which can accurately and reliably predict models for proteins and some complexes directly from the sequence alone. Although they offer new opportunities individually, there is an inherent synergy between these techniques, allowing for the construction of large, complex macromolecular models. Here, we give a brief overview of these approaches in addition to illustrating works that combine these techniques for model building. These examples provide insight into model building, assessment, and limitations when integrating predictive modeling with cryo-EM density maps. Together, these approaches offer the potential to greatly accelerate the generation of macromolecular structural insights, particularly when coupled with experimental data.

Keywords

Models, Molecular, Cryoelectron Microscopy, Proteins, Protein Conformation, Machine Learning, Macromolecular Substances

DOI

10.1016/j.bpj.2024.01.021

PMID

38268190

PMCID

PMC10912932

PubMedCentral® Posted Date

1-23-2024

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.