
Faculty, Staff and Student Publications
Publication Date
6-1-2022
Journal
Journal of Biological Chemistry
Abstract
Cytokinesis in the early divergent protozoan Trypanosoma brucei occurs from the anterior cell tip of the new-flagellum daughter toward the nascent posterior end of the old-flagellum daughter of a dividing biflagellated cell. The cleavage furrow ingresses unidirectionally along the preformed cell division fold and is regulated by an orphan kinesin named kinesin localized to the ingressing furrow (KLIF) that localizes to the leading edge of the ingressing furrow. Little is known about how furrow ingression is controlled by KLIF and whether KLIF interacts with and cooperates with other cytokinesis regulatory proteins to promote furrow ingression. Here, we investigated the roles of KLIF in cleavage furrow ingression and identified a cohort of KLIF-associated cytoskeletal proteins as essential cytokinesis regulators. By genetic complementation, we demonstrated the requirement of the kinesin motor activity, but not the putative tropomyosin domain, of KLIF in promoting furrow ingression. We further showed that depletion of KLIF impaired the resolution of the nascent posterior of the old-flagellar daughter cell, thereby stalking cleavage furrow ingression at late stages of cytokinesis. Through proximity biotinylation, we identified a subset of cytoskeleton-associated proteins (CAPs) as KLIF-proximal proteins, and functional characterization of these cytoskeletal proteins revealed the essential roles of CAP46 and CAP52 in positioning the cleavage furrow and the crucial roles of CAP42 and CAP50 in promoting cleavage furrow ingression. Together, these results identified multiple cytoskeletal proteins as cytokinesis regulators and uncovered their essential and distinct roles in cytokinesis.
Keywords
Cytokinesis, Cytoskeletal Proteins, Humans, Kinesins, Protozoan Proteins, Trypanosoma brucei brucei, Trypanosoma brucei, cytokinesis, cleavage furrow, orphan kinesin, cytoskeleton
DOI
10.1016/j.jbc.2022.101943
PMID
35447115
PMCID
PMC9117871
PubMedCentral® Posted Date
4-18-2022
PubMedCentral® Full Text Version
Post-print
Published Open-Access
yes