Faculty, Staff and Student Publications

Publication Date

4-14-2025

Journal

npj Digital Medicine

Abstract

Seizure frequency is essential for evaluating epilepsy treatment, ensuring patient safety, and reducing risk for Sudden Unexpected Death in Epilepsy. As this information is often described in clinical narratives, this study presents an approach to extracting structured seizure frequency details from such unstructured text. We investigated two tasks: (1) extracting phrases describing seizure frequency, and (2) extracting seizure frequency attributes. For both tasks, we fine-tuned three BERT-based models (bert-large-cased, biobert-large-cased, and Bio_ClinicalBERT), as well as three generative large language models (GPT-4, GPT-3.5 Turbo, and Llama-2-70b-hf). The final structured output integrated the results from both tasks. GPT-4 attained the best performance across all tasks with precision, recall, and F1-score of 86.61%, 85.04%, and 85.79% respectively for frequency phrase extraction; 90.23%, 93.51%, and 91.84% for seizure frequency attribute extraction; and 86.64%, 85.06%, and 85.82% for the final structured output. These findings highlight the potential of fine-tuned generative models in extractive tasks from limited text strings.

Keywords

Predictive markers, Epilepsy, Risk factors

DOI

10.1038/s41746-025-01592-4

PMID

40229513

PMCID

PMC11997153

PubMedCentral® Posted Date

4-14-2025

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.