Faculty, Staff and Student Publications

Publication Date

10-1-2024

Journal

Journal of Biomedical Informatics

Abstract

Objective: Complex diseases exhibit heterogeneous progression patterns, necessitating effective capture and clustering of longitudinal changes to identify disease subtypes for personalized treatments. However, existing studies often fail to design clustering-specific representations or neglect clinical outcomes, thereby limiting the interpretability and clinical utility.

Method: We design a unified framework for subtyping longitudinal progressive diseases. We focus on effectively integrating all data from disease progressions and improving patient representation for downstream clustering. Specifically, we propose a clinical Outcome-Guided Deep Temporal Clustering (OG-DTC) that generates representations informed by clustering and clinical outcomes. A GRU-based seq2seq architecture captures the temporal dynamics, and the model integrates k-means clustering and outcome regression to facilitate the formation of clustering structures and the integration of clinical outcomes. The learned representations are clustered using a Gaussian mixture model to identify distinct subtypes. The clustering results are extensively validated through reproducibility, stability, and significance tests.

Results: We demonstrated the efficacy of our framework by applying it to three Alzheimer's Disease (AD) clinical trials. Through the AD case study, we identified three distinct subtypes with unique patterns associated with differentiated clinical declines across multiple measures. The ablation study revealed the contributions of each component in the model and showed that jointly optimizing the full model improved patient representations for clustering. Extensive validations showed that the derived clustering is reproducible, stable, and significant.

Conclusion: Our temporal clustering framework can derive robust clustering applicable for subtyping longitudinal progressive diseases and has the potential to account for subtype variability in clinical outcomes.

Keywords

Humans, Disease Progression, Cluster Analysis, Alzheimer Disease, Algorithms, Reproducibility of Results, Deep Learning

DOI

10.1016/j.jbi.2024.104732

PMID

39357664

PMCID

PMC12051182

PubMedCentral® Posted Date

5-5-2025

PubMedCentral® Full Text Version

Author MSS

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.