Faculty, Staff and Student Publications

Publication Date

5-1-2025

Journal

PLOS Digital Health

Abstract

Predictive models in biomedicine need to ensure equitable and reliable outcomes for the populations they are applied to. However, biases in AI models for medical predictions can lead to unfair treatment and widening disparities, underscoring the need for effective techniques to address these issues. However, current approaches struggle to simultaneously mitigate biases induced by multiple sensitive features in biomedical data. To enhance fairness, we introduce a framework based on a Multiple Domain Adversarial Neural Network (MDANN), which incorporates multiple adversarial components. In an MDANN, an adversarial module is applied to learn a fair pattern by negative gradients back-propagating across multiple sensitive features (i.e., the characteristics of patients that should not lead to a prediction outcome that may intentionally or unintentionally lead to disparities in clinical decisions). The MDANN applies loss functions based on the Area Under the Receiver Operating Characteristic Curve (AUC) to address the class imbalance, promoting equitable classification performance for minority groups (e.g., a subset of the population that is underrepresented or disadvantaged.) Moreover, we utilize pre-trained convolutional autoencoders (CAEs) to extract deep representations of data, aiming to enhance prediction accuracy and fairness. Combining these mechanisms, we mitigate multiple biases and disparities to provide reliable and equitable disease prediction. We empirically demonstrate that the MDANN approach leads to better accuracy and fairness in predicting disease progression using brain imaging data and mitigating multiple demographic biases for Alzheimer's Disease and Autism populations than other adversarial networks.

DOI

10.1371/journal.pdig.0000830

PMID

40445951

PMCID

PMC12124548

PubMedCentral® Posted Date

5-30-2025

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.