Faculty, Staff and Student Publications

Publication Date

11-1-2024

Journal

CEUR Workshop Proceedings

Abstract

Ontology development involves a top-down approach where ontology engineers and domain experts collaboratively define and evaluate ontological elements and axioms. Translating ontology axioms into natural language can significantly aid in ontology evaluation by making the content more understandable to subject matter experts who may lack a background in knowledge engineering. In this preliminary study, we investigate the potential of large language models (LLMs) in axiom translation from ontologies to facilitate ontology evaluation. We utilize Llama 3 to translate 1,192 ontology axioms across 19 distinct axiom types from five published ontologies. Results show that 163 (13.67%) of the Llama 3 translation of the axiom are accurately represented, 268 (22.48%) are not accurately represented, and 761 (63.84%) are partially accurate. Our manual evaluation of the Llama 3 translation indicates some competency in producing hierarchical natural language equivalents while revealing some limitations when translating complex axioms. Nonetheless, there are opportunities to improve the results with few-shot training or using LLMs to provide support in knowledge engineering for ontologies.

PMID

40538705

PMCID

PMC12178606

PubMedCentral® Posted Date

6-19-2025

PubMedCentral® Full Text Version

Author MSS

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.